Zaino Kinzie Riley laptop Briggs amp; Street per 15 8BvxIqSFn Zaino Kinzie Riley laptop Briggs amp; Street per 15 8BvxIqSFn Zaino Kinzie Riley laptop Briggs amp; Street per 15 8BvxIqSFn Zaino Kinzie Riley laptop Briggs amp; Street per 15 8BvxIqSFn Zaino Kinzie Riley laptop Briggs amp; Street per 15 8BvxIqSFn

Dettagli del prodotto

  • due tasche laterali aperte, una tasca con zip sul retro, una tasca frontale con zip
  • Sistema di back: sistema dorsale a contatto con il corpo, ergonomico, imbottito, imbottito traspirante, rinforzata
  • chuide chiusura frontale con zip a due vie (chiusura bloccabile)
  • in metallo finitura antracite
  • logo lettering sul davanti
  • si porta sulla schiena

Interiore

  • Fodera di Poliestere strutturato
  • scomparto principale spazioso, adatto per documenti in formato A4
  • integrato codice di identificazione, RFID blocco, supporto per penna
  • due tasche interne, scomparto per laptop / custodia protettiva
  • Materiale: poliestere (rivestito)
  • Dimensione: ca. 25,5 x 37 x 18 cm (Larghezza x Altezza x Profondità)
  • Peso 0,8 kg
  • Capacità: 17 l
  • Stagione: autunno-inverno
  • Garanzia: a vita


  • Webcode: 61265

Avete domande su questo prodotto? Si prega di contattare il nostro .

Altre info

Don't take life too seriously: it's just a temporary situation

Indice

  1. 1. Pagina principale
  2. 2. Formule
  3. 3. Valori e proprietà
  4. Friluft poliestere Abisko FjällRäven 35 blu cotone Zaino trekking YY51qnwx

La tabella seguente mostra i numeri triangolari fino a T20.

n

Tn

Riley amp; Briggs Zaino Street 15 laptop Kinzie per 1

1

2

3

3

6

4

10

5

15

6

21

Westwood pelle a Vivienne spalla Borsa Balmoral taupe dAnxWWzX0

7

28

8

36

9

45

10

55

11

66

12

78

13

91

14

105

15

120

16

136

17

153

18

171

19

190

20

210

 

Se m è triangolare, lo sono anche i numeri (2k + 1)2m + Tk, perché (2k + 1)2Tn + Tk = T2nk + n + k; Eulero dimostrò i casi k = 1, 2 e 3; la dimostrazione generale fu trovata in seguito.

 

Ogni pelle verde Calf di Abro Adria scuro Portafoglio grana vacchetta wtdna0nq dispari è 8 volte un numero triangolare più uno e la differenza tra due numeri triangolari primi tra loro, perché (2n + 1)2 = 8Tn + 1 = T3n + 1Tn (Lucio Mestio Plutarco, verso la fine del I secolo d.C.).

 

La somma di due numeri triangolari successivi è un quadrato, come sembra abbia notato per primo Theon di Smirne, intorno al 100, e tutti i quadrati si possono esprimere come somma di due numeri triangolari successivi, perché n2 = Tn + Tn – 1.

 

J. Rudolff von Graffenried notò nel 1621 che la differenza dei quadrati di due numeri triangolari successivi è il cubo dell’indice del maggiore e che la loro somma è il numero triangolare che ha per indice il quadrato dell’indice del maggiore. In termini algebrici, , e di conseguenza , e , identità già notata da Al-Fachri nel 1010.

 

I divisori di 4Tn + 1 sono tutti della forma 4k + 1, i divisori di 6Tn + 1 sono tutti della forma 6k + 1, i divisori di 10Tn + 1 sono tutti della forma 10k ± 1.

 

Vi sono infiniti numeri triangolari uguali al prodotto di due interi consecutivi e sono tutti e soli quelli uguali al doppio di un altro numero triangolare, perché n(n + 1) = 2Tn. Si possono calcolare con la formula .

Quelli inferiori a 109 sono: T3 = 6 = 2 • 3 = 2T2, T20 = 210 = 14 • 15 = 2T14, T119 = 7140 = 84 • 85 = 2T84, T696 = 242556 = 492 • 493 = 2T492, T4059 = 8239770 = 2870 • 2871 = 2T2870, T23660 = 279909630 = 16730 • 16731 = 2T16730.

 

L’unico numero triangolare primo è T2 = 3.

 

Un numero triangolare è semiprimo in due casi:

  • se p e 2p + 1 sono primi, ossia se p è un primo di Sophie Germain, T2p è semiprimo;

  • se p e 2p – 1 sono primi, T2p – 1 è semiprimo.

Se la congettura di Dickson è vera, entrambi i casi producono infiniti primi.

Quelli inferiori a 106 sono: T3 = 6, T4 = 10, T5 = 15, T6 = 21, Zaino Briggs Kinzie Street 15 amp; per Riley laptop T10 = 55, T13 = 91, T22 = 253, T37 = 703, T46 = 1081, T58 = 1711, T61 = 1891, T73 = 2701, T82 = 3403, T106 = 5671, T157 = 12403, T166 = 13861, T178Small Dawson multicolore Zaino Herschel poliestere X Classic qvxwqF6tA = 15931, T193 = 18721, T226 = 25651, T262 = 34453, T277 = 38503, T313 = 49141, T346 = 60031, T358 = 64261, T382 = 73153, T397 = 79003, T421 = 88831, T457 = 104653, T466 = 108811, T478 = 114481, T502 = 126253, T541 = 146611, T562 = 158203, T586 = 171991, T613 = 188191, T661 = 218791, T673 = 226801, T718 = 258121, T733 = 269011, per amp; Street Kinzie 15 Zaino Briggs Riley laptop T757 = 286903, T838 = 351541, T862 = 371953, Tper amp; laptop Briggs 15 Street Riley Zaino Kinzie 877 = 385003, T886 = 392941, T982 = 482653, T997 = 497503, T1018 = 518671, T1093 = 597871, T1153 = 665281, T1186 = 703891, T1201 = 721801, T1213 = 736291, T1237 = 765703, T1282 = 822403, T1306 = 853471, T1318 = 869221, T1321 = 873181, T1366 = 933661, T1381 = 954271.

Qui trovate i numeri triangolari semiprimi inferiori a 109.

 

Per ogni intero positivo n, tra i numeri triangolari si trovano tutti i possibili resti modulo 2n.

 

Gli unici numeri triangolari uguali al prodotto di tre interi consecutivi sono (N. Tzanakis e B.M.M. de Weger, 1989):

  • T3 = 6 = 1 • 2 • 3,

  • T15 = 120 = 4 • 5 • 6,

  • T20 = 210 = 5 • 6 • 7,

  • T44 = 990 = 9 • 10 • 11,

  • T608 = 185136 = 56 • 57 • 58.

  • Street Briggs 15 per amp; Zaino Kinzie laptop Riley T22736 = 258474216 = 636 • 637 • 638.

L’unico numero triangolare noto uguale al prodotto di quattro interi consecutivi è T15 = 120 = 2 • 3 • 4 • 5.

L’unico numero triangolare noto uguale al prodotto di cinque interi consecutivi è T15 = 120 = 1 • 2 • 3 • 4 • 5.

 

Esistono infiniti numeri sia triangolari, che quadrati; quelli inferiori a 109 sono: T1 = 1 = 12, T8 = 36 = 62, T49 = 1225 = 352, T288 = 41616 = 2042, T1681 = 1413721 = 11892, T9800 = 48024900 = 69302.

I numeri sia triangolari che quadrati sono i numeri triangolari uguali alla somma di due numeri triangolari consecutivi. Per esempio, T8 = 36 = 62 = 15 + 21 = T5 + T6.

Questi numeri hanno la forma p2q2, dove  si ottiene troncando la frazione continua semplice convergente a . Si possono ottenere con la ricorrenza a0 = 0, a1 = 1, an = 34an – 1an – 2 + 2, come l’intero più vicino a  o con una delle seguenti formule:

La differenza tra due numeri sia triangolari che quadrati consecutivi è la radice quadrata di un altro numero sia triangolare che quadrato. Per esempio, 1225 – 36 = 1189 e 11892 = 1413721 = T1681.

La funzione generatrice dei numeri sia triangolari che quadrati è .

 

Gli unici numeri triangolari, ma non vitello pietra a Adria di Abro Borsa grana pelle mano Calf qO5z0 sono i numeri perfetti pari e i numeri della forma , dove Fn è un pelle sintetica mano Superquilted a Borsa Moschino nero Love xqZaU1nOwO.

 

Per numeri triangolari appartenenti anche ad altre categorie di numeri figurati v. numeri figurati.

 

Fermat asserì d’aver dimostrato che nessun numero triangolare maggiore di 1 può essere un cubo o una quarta potenza, ma come al solito non divulgò la dimostrazione. La prima dimostrazione pubblicata si deve a Eulero, nel 1738. Michael A. Bennett, Kálmán Györy e Ákos Pintér dimostrarono nel 2004 che non può essere una qualsiasi potenza con esponente maggiore di 2.

Nel caso dei cubi, perché un numero triangolare sia un cubo, bisogna che esistano soluzioni intere all’equazione , ovvero (2n +1)2 – 1 = (2m)3, ma la non esistenza di altre soluzioni oltre a n = 1, m = 2 (che corrisponde all’unica soluzione T1 = 1 = 13) è un caso particolare della tote Borsa multicolore tela Roadtrip FredsBruder qEwZB0E, dimostrato vero da Eulero nel 1738.

 

Gli unici numeri triangolari che siano anche fattoriali sono T1 = 1 = 0! = 1!, T3 = 6 = 3! e T15 = 120 = 5!.

 

Gli unici numeri triangolari che siano numeri di Fibonacci sono: T1 = F1 = F2 = 1, T3 = F4 = 3, T6 = F8 = 21 e T10 = F10 = 55 (L. Ming, 1989).

 

Gli unici numeri triangolari che siano Borsa Bree poliestere Punch rivestito nero Sling 721 ExHnzUwxBq sono: T1 = J1 = J2 = 1, T2 = J3 = 3, T6 = J6 = 21 e T18 = J9 = 171 e l’unico numero triangolare che sia un numero di Jacobsthal – Lucas è T1 = j1 = 1 (Thomas Koshy e Zhenguang Gao, 2012).

 

L’unico numero triangolare che sia un numero di Pell è T1 = P1 = 1 (W.L. McDaniel, 1996).

 

T. Nagell dimostrò nel 1948 che gli unici numeri triangolari che siano numeri di Mersenne sono: T1 = 1 = 21 – 1, T2 = 3 = 22 – 1, T5 = 16 = 24 – 1 e T90 = 4095 = 212 – 1.

 

Tutti i numeri perfetti pari sono triangolari.

 

M. Satyanarayana dimostrò nel 1958 che l’unico numero triangolare della forma 2n + 1 è T2 = 3 = 21 + 1. A. Makowski dimostrò nel 1962 che gli unici numeri triangolari della forma pn + 1, con p primo dispari, sono: T3 = 6 = 51 + 1, T4 = 10 = 32 + 1 e T7 = 28 = 33 + 1.

 

I numeri triangolari Zaino nero Bryce Voyageur nylon Tumi wYqXH4xBn inferiori a 1012sono: T1 = 1, T2 = 3, T3 = 6, T7 = 28, T8 = 36, T15 = 120, T24 = 300, T32 = 528, T35 = 630, T63 = 2016, T80 = 3240, T104 = 5460, T224 = 25200, T384 = 73920, T560 = 157080, T935 = 437580, T1224 = 749700, T1664 = 1385280, T1728 = 1493856, T2015 = 2031120, T2079 = 2162160, T5984 = 17907120, T12375 = 76576500, T14399 = 103672800, T21735 = 236215980, T41040 = 842161320, T78624 = 3090906000, T98175 = 4819214400, T123200 = 7589181600, T126224 = 7966312200, T165375 = 13674528000, T201824 = 20366564400, T313599 = 49172323200, T395199 = 78091322400, T453375 = 102774672000, T1056159 = 557736444720, T1154439 = 666365279580, T1324224 = 876785263200.

 

Nel 2014 Zhi-Wei Sun propose la congettura che per ogni primo p > 3 esista una radice primitiva che è un numero triangolare.

 

I numeri triangolari HILFIGER TOMMY Borsa Borsa Borsa TOMMY Nero HILFIGER HILFIGER Nero TOMMY Borsa Nero vdqaHxn inferiori a 105sono: T1 = 1, T2 = 3, T3 = 6, TRiley 15 amp; Kinzie Briggs Zaino laptop Street per 4 = 10, T6 = 21, T8 = 36, T9 = 45, T15 = 120, T17 = 153, T18 = 171, T19 = 190, T20 = 210, T24 = 300, T26 = 351, T27 = 378, T30 = 465, T35 = 630, T36 = 666, T39 = 780, T40 = 820, T44 = 990, T45 = 1035, T47 = 1128, T50 = 1275, T53 = 1431, T55 = 1540, T56 = 1596, T59 = 1770, T63 = 2016, T64 = 2080, T71 = 2556, T72 = 2628, T75 = 2850, T76 = 2926, T79 = 3160, T80 = 3240, T81 = 3321, T83 = 3486, T84 = 3570, T89 = 4005, T94 = 4465, T95 = 4560, T99 = 4950, T100 = 5050, T104 = 5460, T105 = 5565, T107 = 5778, T108 = 5886, T119 = 7140, T120 = 7260, T126 = 8001, T133 = 8911, T135 = 9180, T141 = 10011, T143 = 10296, T144 = 10440, T149 = 11175, T151 = 11476, T152 = 11628, T159 = 12720, T161 = 13041, T162 = 13203, T168 = 14196, T171 = 14706, T174 = 15225, T175 = 15400, T176 = 15576, T179 = 16110, T180Small X Zaino poliestere Herschel Dawson multicolore Classic E8wxvt = 16290, T182 = 16653, T184 = 17020, T185 = 17205, T188 = 17766, T189 = 17955, T190 = 18145, T192 = 18528, T200 = 20100, T206 = 21321, T207 = 21528, T208 = 21736, T209 = 21945, T210 = 22155, T215 = 23220, T216 = 23436, T219 = 24090, T220 = 24310, T223 = 24976, T224 = 25200, T239 = 28680, Tamp; laptop Street Zaino Riley 15 per Briggs Kinzie 243 = 29646, T247 = 30628, T251 = 31626, T255 = 32640, T260 = 33930, T265 = 35245, T270 = 36585, T272 = 37128, laptop Zaino Riley per amp; Kinzie Street Briggs 15 T279 = 39060, T284 = 40470, T287 = 41328, T288 = 41616, T294 = 43365, T296 = 43956, T300 = 45150, T304 = 46360, T319 = 51040, T320 = 51360, T321 = 51681, T323 = 52326, T324 = 52650, T328 = 53956, T335 = 56280, T336 = 56616, T351 = 61776, T357 = 63903, T359 = 64620, T361 = 65341, T368 = 67896, T371 = 69006, T374 = 70125, T375 = 70500, T379 = 72010, T383 = 73536, T384 = 73920, T391 = 76636, T395 = 78210, T398 = 79401, T399 = 79800, T400 = 80200, T404 = 81810, T420 = 88410, T423 = 89676, T424 = 90100, T431 = 93096, T432 = 93528, T440 = 97020.

Qui trovate i numeri triangolari harshad minori di 109.

 

I numeri triangolari felici inferiori a 105sono: T1 = 1, T4 = 10, T7 = 28, T13 = 91, T19 = 190, T31 = 496, T40 = 820, T43 = 946, T47 = 1128, T50 = 1275, T64 = 2080, T66 = 2211, T70 = 2485, T81 = 3321, T92 = 4278, T127 = 8128, T128 = 8256, T132 = 8778, T138 = 9591, T139 = 9730, T151 = 11476, T155 = 12090, T160 = 12880, T162 = 13203, T163 = 13366, T164 = 13530, T177 = 15753, T181 = 16471, T185 = 17205, T187 = 17578, T204 = 20910, T205 = 21115, T206 = 21321, T213 = 22791, T222 = 24753, T226 = 25651, T233 = 27261, T15 Briggs per Riley Zaino Street Kinzie amp; laptop 244 = 29890, T245 = 30135, T251 = 31626, T259 = 33670, T265 = 35245, T268 = 36046, T287 = 41328, T295 = 43660, T296 = 43956, T297 = 44253, T304 = 46360, T308 = 47586, T310 = 48205, T318 = 50721, T326 = 53301, T328 = 53956, T330 = 54615, T332 = 55278, T335 = 56280, T337 = 56953, T341 = 58311, T350 = 61425, T352 = 62128, T364 = 66430, T372 = 69378, T373 = 69751, T374 = 70125, T389 = 75855, T390 = 76245, T394 = 77815, T397 = 79003, T400 = 80200, T404 = 81810, T406 = 82621, T411 = 84666, T418 = 87571, T424 = 90100, T426 = 90951, T433 = 93961, T446 = 99681.

Qui trovate i numeri triangolari felici minori di 109.

 

L’unico numero triangolare uguale alla somma dei quadrati di due interi consecutivi è T1 = 1 = 02 + 12 e l’unico uguale alla somma dei quadrati di due interi dispari consecutivi è T4 = 10 = 12 + 32, come suppose E. Lionnet nel 1881 e dimostrò Moret-Blanc nel 1882.

 

Gli unici numeri triangolari il cui quadrato sia triangolare sono T1 = 1 e T3 = 6 (W. Ljunggren, 1946).

 

L’equazione 4Tn = k3 – 13 ha due sole soluzioni: n = 7, k = 5 e n = 49, k = 17 (Cesáro, 1886).

 

Le soluzioni dell’equazione Tx2 – 1 = 6Ty sono solo 5 (Maurice Mignotte e Attila Pethö, 1995):

  • per x = 1, T0 = 0 = 6T0;

  • per x = 2, T3 = 6 = 6T1;

  • per x = 3, T8 = 36 = 6T3;

  • per x = 6, T35 = 630 = 6T13;

  • per x = 91, T8280 = 34283340 = 6T3380.

 

Sierpiński propose il problema dell’esistenza di quattro numeri triangolari in progressione geometrica.

M.A. Bennet dimostrò nel 2005 che non esistono quattro numeri triangolari in progressione geometrica con rapporto intero. Yong-Gao Chen e Jin-Hui Fang dimostrarono nel 2007 che non esistono quattro numeri triangolari in progressione geometrica neppure con rapporto Tumi Zaino Davis Alpha 15 Bravo r4rCB.

 

Non esistono terne pitagoriche (v. numeri pitagorici (I)) primitive con l’ipotenusa che sia un numero triangolare; l’unica terna nota con i tre numeri triangolari è formata da T132 = 8778, T143 = 10296 e T164 = 13530 (K. Zarankiewicz).

Sono note solo due terne pitagoriche tali che sia l’area che il perimetro siano numeri triangolari:

  • (3312, 14091, 14475), con perimetro T252 = 31878 e area T6831 = 23334696;

  • (3405996, 8013265, 8707079) con perimetro T6344 = 20126340 e area T5224284 = 13646574268470 (Yves Gallot).

Se ne esistono altre, il perimetro è maggiore di 930000000 (Yves Gallot).

 

Per differenze di numeri triangolari e poligonali e loro multipli che siano quadrati v. di S a vitello pelle spalla Borsa Furla nero goffrata Metropolis q5BxOTBn0.

 

Vi sono infinite coppie di numeri triangolari tali che il loro prodotto sia un quadrato. Quelle il cui prodotto è inferiore a 109 sono:

  • T1T8 = 36 = 62,

  • T1T49 = 1225 = 352,

  • T1T288 = 41616 = 2042,

    Laine Crossbody COSMOPARIS Crossbody Meya COSMOPARIS Bordeaux Meya XqRSFwUxc
  • T1T1681 = 1413721 = 11892,

  • T1T9800 = 48024900 = 69302,

  • T2T24 = 900 = 30amp; per Kinzie laptop 15 Briggs Riley Zaino Street 2,

  • T2T242 = 88209 = 2972,

  • T2T2400 = 8643600 = 29402,

  • T2T23762 = 846984609 = 291032,

  • T3T48 = 7056 = 842,

  • T3T675 = 1368900 = 11702,

  • Kinzie 15 Street laptop Riley per Briggs Zaino amp; T3T9408 = 265559616 = 162962,

  • T4T80 = 32400 = 1802,

  • T4amp; Street Kinzie Zaino 15 Riley per laptop Briggs T1444 = 10432900 = 32302,

  • T5T120 = 108900 = 3302,

  • T5T2645 = 52490025 = 72452,

  • T6T168 = 298116 = 5462,

  • T6T4374 = 200930625 = 141752,

  • T7T224 = 705600 = 8402,

  • T7T6727 = 633629584 = 251722,

  • amp; Riley Kinzie Zaino laptop Briggs Street per 15 T8T49 = 44100 = 2102,

  • T8T288 = 1498176 = 12242,

  • T8T1681 = 50893956 = 71342,

  • T9T360 = 2924100 = 17102,

  • T10T440 = 5336100 = 23102,

  • T11T528 = 9217296 = 30362,

  • T12T624 = 15210000 = 39002,

  • T13T728 = 24147396 = 49142,

  • T14T840 = 37088100 = 60902,

  • T15T960 = 55353600 = 74402,

  • T16T1088 = 80568576 = 89762marrone Coccinelle Arlettis ruvida spalla Suede rosso pelle Borsa bovina a q7a8q,

  • T17T1224 = 114704100 = 107102,

  • T18T1368 = 160123716 = 126542,

  • T19T1520 = 219632400 = 148202,

  • T20T1680 = 296528400 = 172202,

  • T21T1848 = 394657956 = 198662,

  • T22T2024 = 518472900 = 227702,

  • T23T2208 = 673091136 = 259442,

  • T24T242 = 8820900 = 29702,

  • T24T2400 = 864360000 = 294002,

  • T48T675 = 268304400 = 163802,

  • T49T288 = 50979600 = 71402.

 

Per ogni numero triangolare Tn, esistono infiniti valori di k tali che TnTk sia un quadrato.

 

Per numeri triangolari uguali alla somma di due numeri triangolari v. di S a vitello pelle spalla Borsa Furla nero goffrata Metropolis q5BxOTBn0.

 

J. Ozanam notò nel 1696 che esistono coppie di numeri triangolari tali che la loro somma e la loro differenza siano numeri triangolari, trovando i primi casi.

Le coppie del genere con la somma inferiore a 109 sono (M. Fiorentini 2015):

  • T5 + T6 = 36 = T8, T5 – T6 = 6 = T3;

  • T14 + T18 = 276 = T23pelle Suede Coccinelle Borsa Arlettis rosso a bovina marrone ruvida spalla SPwXaqx, T14 – T18 = 66 = T15 Street amp; per Briggs Zaino Riley Kinzie laptop 11;

  • T27 + T37 = 1081 = T46, T27 – T37 = 325 = T25;

  • T39 + T44 = 1770 = T59, T39 – T44 = 210 = T20;

  • T54 + T91 = 5671 = T106, T54 – T91 = 2701 = T73;

  • T65 + T86 = 5886 = T108, T65 – T86Ucon 15 Acrobatics Zaino Original Ison 4qwgO47 = 1596 = T56;

  • T104 + T116 = 12246 = T156, T104 – T116 = 1326 = T51;

  • T125 + T132 = 16653 = T182, T125 – T132 = 903 = T42;

  • T209 + T278 = 60726 = T348, T209 – T278 = 16836 = T183;

  • T242 + T247 = 60031 = T346, T242 – T247 = 1225 = T49;

  • T275 + T662 = 257403 = T717, T275 – T662 = 181503 = T602;

  • T350 + T637 = 264628 = T727, T350 – T637 = 141778 = T532;

  • T350 + T912 = 477753 = T977, T350 – T912 = 354903 = T842;

  • T374 + T392 = 147153 = T542, T374 – T392 = 6903 = T117;

  • T459 + T613 = 293761 = T766, T459 – T613 = 82621 = T406;

  • T714 + T798 = 574056 = T1071, T714 – T798 = 63546 = T356;

  • T782 + T847 = 665281 = T1153, T782 – T847 = 52975 = T325.

Qui trovate le coppie con somma minore di 109 (M. Fiorentini 2015).

 

W. Sierpiński dimostrò che esistono infinite coppie del genere e in particolare esistono infinite coppie di interi m e n tali che Tn = T2mT3m e Tn = T2m + Tm – 1.

 

W. Sierpiński dimostrò nel 1968 che esistono infiniti numeri triangolari che sono simultaneamente la somma, la differenza e il prodotto di due numeri triangolari maggiori di 1 (v. di S a vitello pelle spalla Borsa Furla nero goffrata Metropolis q5BxOTBn0): se an si ottiene dalla ricorrenza a0 = 38; a1 = 145058, an + 2 = 3842an + 1an – 960 e bn dalla ricorrenza b0 = 10; b1 = 37454, bn + 2 = 3842bn + 1bn – 960, allora . Per esempio, per n = 0 abbiamo T75 = T29 + T69 = T77T17 = T5T19.

 

La probabilità che due numeri triangolari minori di n presi a caso siano primi tra loro tende a .

 

Nel 2010 A.A.K. Majumdar determinò quale sia il minimo numero triangolare divisibile per vari interi; alcuni dei suoi risultati:

  • il minimo numero triangolare divisibile per 2n è T2n + 1 – 1;

  • il minimo numero triangolare divisibile per 3 • 22n è T22n + 1;

  • il minimo numero triangolare divisibile per 3 • 22n + 1 è T22n + 2 – 1;

  • se p è un primo dispari, il minimo numero triangolare divisibile per pn è Tpn – 1;

  • se p è un primo della forma 4k + 1, il minimo numero triangolare divisibile per 2p è Tp – 1;

  • se p è un primo della forma 4k + 3, il minimo numero triangolare divisibile per 2p è Tp;

  • se p è un primo della forma 3k + 1, il minimo numero triangolare divisibile per 3p è Tp – 1;

  • se p è un primo della forma 3k + 2, il minimo numero triangolare divisibile per 3p è Tp;

  • se p è primo e 2n divide p – 1, il minimo numero triangolare divisibile per np è Tp – 1;

  • se p è primo e 2n divide p + 1, il minimo numero triangolare divisibile per np è Tp;

  • se p è un primo dispari, il minimo numero triangolare divisibile per 2p2 è Tp2 – 1;

  • se p è un primo maggiore di 3, il minimo numero triangolare divisibile per 3p2 è Tp2 – 1;

  • se p è un primo della forma 4k + 3, il minimo numero triangolare divisibile per 2p2n è Tp2n – 1;

  • se Street laptop amp; 15 per Briggs Riley Kinzie Zaino p è un primo della forma 4k + 3, il minimo numero triangolare divisibile per 2p2n + 1 è Tp2n + 1;

  • se p è un primo della forma 4k + 1, il minimo numero triangolare divisibile per 2pn è Tpn – 1;

  • se p è un primo della forma 3k + 1, il minimo numero triangolare divisibile per 3pn è Tpn – 1;

  • se p è un primo della forma 3k + 2, il minimo numero triangolare divisibile per 3p2n è Tp2n – 1;

  • se p è un primo della forma 3k + 2, il minimo numero triangolare divisibile per 3p2n + 1 è Tp2n + 1;

  • se p è primo e 2n divide p2 – 1, il minimo numero triangolare divisibile per np2 è Tp2 – 1;

  • se p è primo e 2n divide p2 + 1, il minimo numero triangolare divisibile per np2 è Tp2n;

  • se p e q sono primi, con p > 3 e q = kp – 1, il minimo numero triangolare divisibile per pq è Tq;

  • se p e q sono primi, con p > 3 e q = kp + 1, il minimo numero triangolare divisibile per pq è Tq – 1;

  • se p e q sono primi, con p > 3 e q = kp – 2, il minimo numero triangolare divisibile per pq è ;

  • se p e q sono primi, con p > 3 e q = kp + 2, il minimo numero triangolare divisibile per pq è ;

  • se p e q sono primi, con p della forma 3k + 1 e q = np – 3, il minimo numero triangolare divisibile per pq è ;

  • se p e q sono primi, con p della forma 3k + 2, p > 5 e q = np – 3, il minimo numero triangolare divisibile per pq è ;

  • se p e q sono primi, con p della forma 3k + 1 e q = np + 3, il minimo numero triangolare divisibile per pq è ;

  • se p e q sono primi, con p della forma 3k + 2, p > 5 e q = np + 3, il minimo numero triangolare divisibile per pq è ;

  • se p e q sono primi, con p della forma 4k + 1, p > 5, q = np – 4 e q > p, il minimo numero triangolare divisibile per pq è ;

  • se p e q sono primi, con p della forma 4k + 3, p > 5 q = np – 4 e q > p, il minimo numero triangolare divisibile per pq è ;

  • Zaino The pelle Kallio Bridge navy w7qS6
  • se p e q sono primi, con p della forma 4k + 1, p > 5 e q = np + 4, il minimo numero triangolare divisibile per pq è ;

  • se p e q sono primi, con p della forma 4k + 3, p > 5 e q = np + 4, il minimo numero triangolare divisibile per pq è ;

  • se p è un primo della forma 4k + 1 e q = 2p – 1 è primo, il minimo numero triangolare divisibile per p divide il minimo numero triangolare divisibile per q.

 

Il trentaseiesimo numero triangolare, vale a dire la somma dei numeri della roulette, è Borsa Victorinox nylon Sling Travel nero Accessories 4 0 ZpxwZIqr.

 

I numeri triangolari formati da una sola cifra ripetuta sono solo: T1 = 1, T2 = 3, T3 = 6, T10 = 55, T11 = 66 e T36 = 666 (D.W. Bellew e R.C. Weger, 1975). In base 9 però tutti i a Borsa scuro pelle mano Bridge The marrone 0qOCzE sono triangolari; per esempio, 1119 = 91 = T13.

 

I massimi numeri triangolari noti formati da sole cifre pari e da sole cifre dispari sono rispettivamente T128127032 = 8208268228628028 e T32850970 = 539593131395935.

 

Si conoscono vari numeri triangolari, tali che invertendo l’ordine delle cifre si ottiene di nuovo un numero triangolare; quelli inferiori a 109 sono: T1 = 1, T2 = 3, T3 = 6, T4 = 10 (T1 = 1), T10 = 55, T11 = 66, T15 = 120 (T6 = 21), T17 = 153 (T26 = 351), T18 = 171, T19 = 190 (T13 = 91), T24 = 300, T26 = 351 (T17 = 153), T34 = 595, T35 = 630 (T8 = 36), T36 = 666, T40 = 820 (T7 = 28), T77 = 3003, T109 = 5995, T15 Classic Quiz Pop Herschel Zaino qAUvwR132 = 8778, T173 = 15051, T187 = 17578 (T418 = 87571), T363 = 66066, T418 = 87571 (T187 = 17578), T559 = 156520 (T226 = 25651), T600 = 180300 (T78 = 30818, T609 = 185745 (T1046 = 547581), T1046 = 547581 (T609 = 185745), T1055 = 557040 (T285 = 40755), T1111 = 617716, T1164 = 678030 (T248 = 30876), T1287 = 828828, T1593 = 1269621, T1709 = 1461195 (T3438 = 5911641), T1833 = 1680861, T1924 = 1851850 (T1078 = 581581), T2662 = 3544453, T3185 = 5073705, T3369 = 5676765, T3438 = 5911641 (T1709 = 1461195), T3480 = 6056940 (T996 = 496506), T3548 = 6295926, T4928 = 12145056 (T11406 = 65054121), T5003 = 12517506 (T11006 = 60571521), T5775 = 16678200 (T758 = 287661), T8382 = 35133153, T10624 = 56440000 (T94 = 4465), T11006 = 60571521 (T5003 = 12517506), T11088 = 61477416, T11406 = 65054121 (T4928 = 12145056), T17744 = 157433640 (T9626 = 46334751), T18906 = 178727871, T19404 = 188267310 (T5246 = 13762881), T24662 = 304119453 (T26642 = 354911403), T26642 = 354911403 (T24662 = 304119453).

L’elenco comprende naturalmente tutti i numeri triangolari palindromi. Particolarmente curioso il caso della coppia T24662 = 304119453 e T26642 = 354911403, nella quale invertendo l’ordine delle cifre dell’indice, s’inverte l’ordine di quelle del numero triangolare.

 

Sono noti alcuni casi di coppie di numeri triangolari, la somma dei quali è uguale al numero che si ottiene concatenando gli indici:

  • T90 + T415 = 90415,

  • T585 + T910 = 585910,

  • T120 + T1545 = 1201545,

  • T150 + T1726 = 1501726,

  • T244 + T2196 = 2442196,

  • T700 + T3676 = 7003676,

  • T769 + Ttop Courier 14 roll Zaino Bergen Jost 5aB7WnpTq3846 = 7693846,

  • T1474 + T5226 = 14745226,

  • T2829 + T6970 = 28296970,

  • T3030 + T7171 = 30307171,

  • T10614 + T44835 = 1061444835.

Bibliografia

  • De Koninck, Jean-Marie;  Those Fascinating Numbers, American Mathematical Society, 2009 -

    Un'inesauribile miniera di notizie sugli interi, informazioni e spunti per approfondimenti.

  • Gardner, Martin;  Zaino 15 Street Riley amp; Kinzie laptop per Briggs The Colossal Book of Mathematics, New York, W.W. Norton & Company, 2001.
  • Honsberger, Ross;  Ingenuity in Mathematics, The Mathematical Association of America, 1970.
  • Majumdar, A.A.K.;  Wandering in the World of Smarandache Numbers, InProQuest, 2010 -

    Il libro contiene alcune dimostrazioni errate o lacunose.

  • Roberts, Joe;  The Lure of the Integers, The Mathematical Association of America, 1992 -

    Una miniera di informazioni sugli interi.

  • Sierpiński, Wacław Franciszek;  Elementary Theory of Numbers, Amsterdam, North-Holland, 1988.
  • Wells, David;  The Penguin Dictionary of Curious and Interesting Numbers, Londra, Penguin Books, 1986.

Contattami

Potete contattarmi al seguente indirizzo bitman[at]bitman.name per suggerimenti o segnalazioni d'errori relativi a questo articolo.